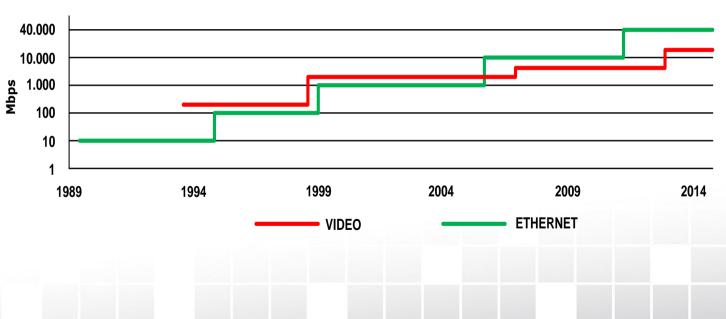
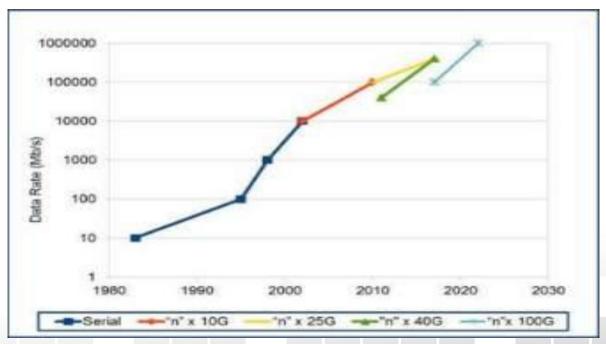


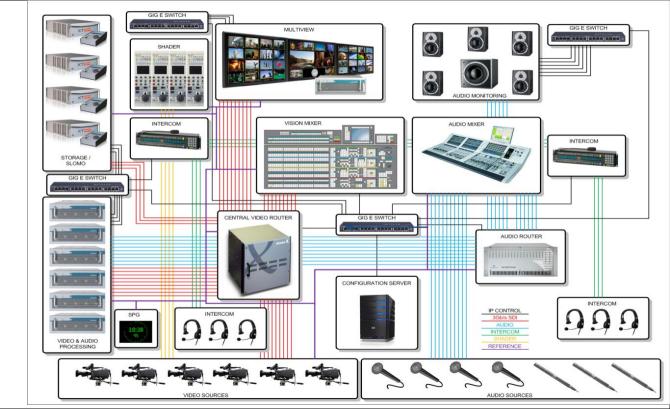
Ethernet AVB Overview and Status

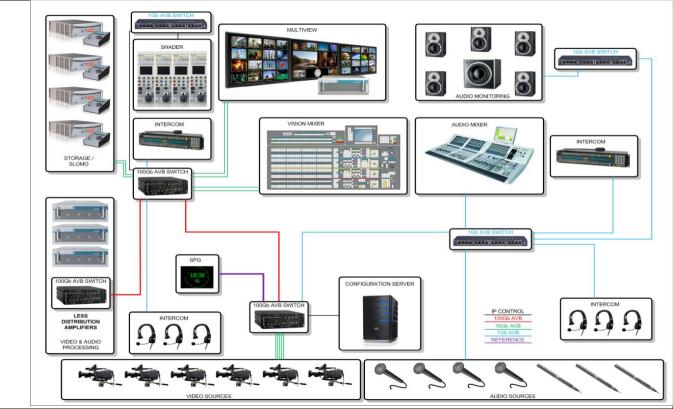
Mark Barkey mark.barkey@axon.tv



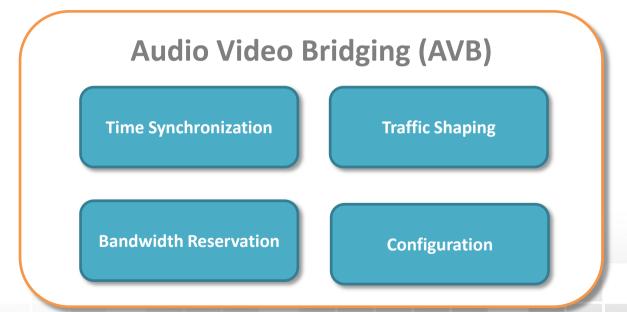
Bye Bye SDI, welcome Ethernet !

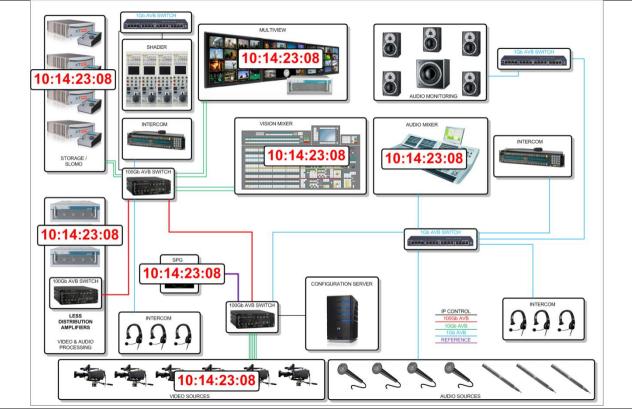


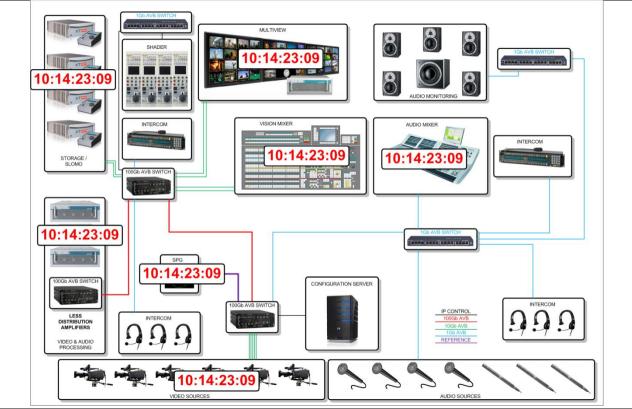

Ethernet bandwidth is evolving very fast

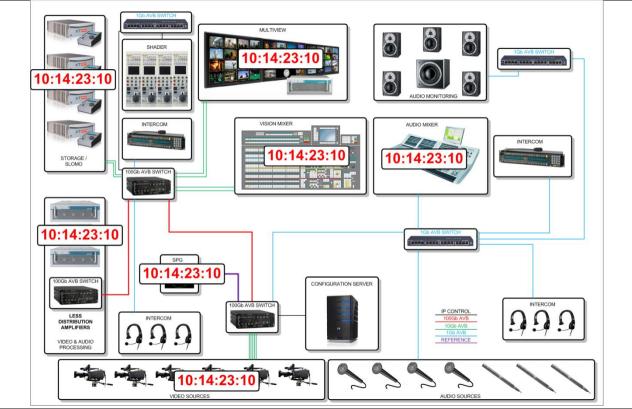


And strong Ethernet roadmap going forward !





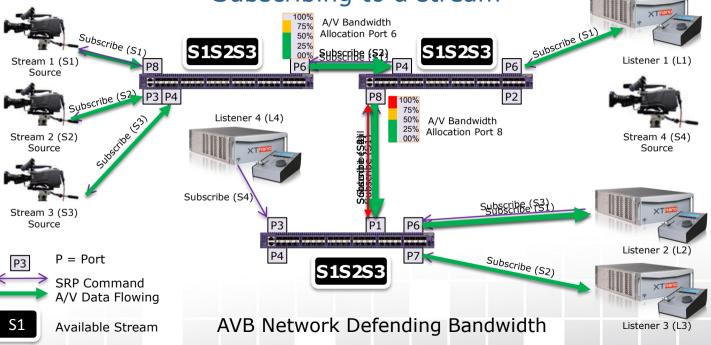




The Ethernet AVB key elements

Admission Control / bandwidth management

This technology makes sure that the payload (audio and video) can use a predefined amount of the bandwidth.


Default is 75% of the maximum link speed

The other 25% of bandwidth can be used for other traffic

AUDIO & VIDEO DATA This percentage is adjustable by the end user on a port by port basis (depending on when available control and other AUDIO & VUC AND OTHER DATE may use more bandwidth as long as aud CONTROL AND other data and video data need less

°AXON

Subscribing to a stream

Forwarding, Queuing & Traffic Shaping (FQTSS)

Priority scheduling of packets:

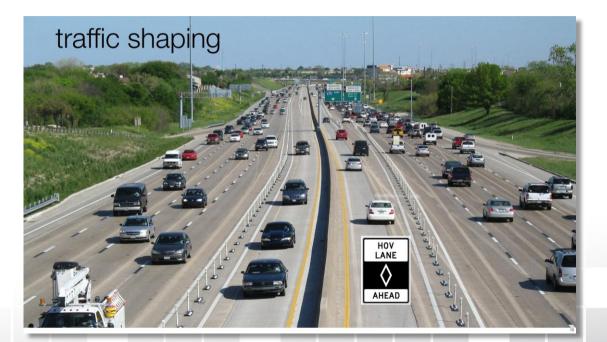
- Time sensitive streams have highest priority (Audio & Video)
- Other data has lower priority

Traffic shaping: AVB nodes must 'behave'

- Avoid bursts on links
- No jumbo-frames !



Example: Ethernet packets in light Traffic



Example: Ethernet packets in heavy Traffic

Example: Ethernet packets in an AVB system

AVB Configuration Protocol

Discovery

Devices announce their presence to any listening controller

Configuration

Controllers learn more about devices of interest and configure them

Connection Management

Controllers make connections between Listeners and Talkers

Control

Controllers interact with devices to control gain, phase, timing etc.

Typical characteristics of an AVB network

All nodes are <u>fully synchronised</u> to a (very stable) network clock

Allows very accurate recovery of media clocks

Low latency: typically 2ms overall network delay

Allows for complex/distributed networks (multiple hops)

The network self-manages bandwidth reservation

links will never get overcommitted and/or packets are dropped

Uses <u>multi-cast</u>

 Only one copy of each active source on any given link or backbone

How real is Ethernet AVB ?

Standards are finished and published

Ethernet AVB switches are shipping

100Mbps, 1Gbps, 10Gbps, 40Gbps and 100 Gbps

Several AVB Pro Audio products on the market from multiple vendors:

- Audio processors, audio consoles, speakers, etc
- Intercom systems

First broadcast quality AVB video products have started shipping

Compliance testing and certification process is up and running,

On-going work on IEEE AVB – Revision of standards

IEEE 1722 (AVB transport layer)

New draft in progress, ballot to start soon,

probably will be published as IEEE 1722-2015

Key new elements:

- Uncompressed audio payload
- Uncompressed video payload (more on that in subsequent slides)
- Clock Reference Streams (stream synchronisation)
- `RTP' (compressed video) payload
- Security / Encryption (based on existing IEEE mechanisms/standards)
- Transport of IEEE 1722 using IP layer (UDP)
 - Port: 17220 (and 17221 for control protocol)

Next generation of AVB technology/standards

Mainly driven from automotive and industrial automation

Renamed to 'Time Sensitive Networking' (TSN)

More focus on control, less on audio and video (hence the name change !)

Key improvements:

- Improved overall network latencies (a few 100 µs max)
- Improved robustness (redundancy switching)
- Improved scalability (network architecture, # of nodes)

Most relevant for professional AV/Broadcast

Better/seamless redundancy switching

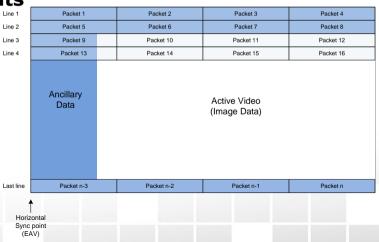
IEEE 1722 transport layer overview

IEEE 1722 specifies a wealth of formats that can be transported:

MIDI

```
IEC-61883 (IEEE 1394 / Firewire)
```

Uncompressed audio (16/24/32 bit, sample rates upto 192 kHz, multi-channel) Audio with meta-data (eg AES-3, allowing for Dolby-E transport) SDI video (encapsulated) RAW video ('active picture' only) Clock Reference Streams (wordclock or H/V sync) Time-Sensitive Control/Data Streams (eg transport of ANC data) RFC ('RTP') compressed video streams Vendor Specific (allows for custom/proprietary formats)



IEEE 1722 SDI Video transport format

Encapsulation of SDI in IEEE1722 packets

Support of all SDI formats

Every new line starts at start of a packet

IEEE 1722 RAW Video Format

Transmit (only) (active) video, audio, data as separate streams and save bandwidth

Saving can be upto 40% (!) vs SDI format !

		<u> </u>	
Active Line 1	Packet 1	Packet 2	Packet 3
Active Line 2	Packet 4	Packet 5	Packet 6
Active Line 3	Packet 7	Packet 8	Packet 9
Ancillary Data		Active Video (Image Data)	
Last Active Line	Packet n-2	Packet n-1	Packet n
	Active Line 1 Active Line 2 Active Line 3 Ancillary Data	Active Line 1 Packet 1 Active Line 2 Packet 4 Active Line 3 Packet 7 Ancillary Data	Active Line 1 Packet 1 Packet 2 Active Line 2 Packet 4 Packet 5 Active Line 3 Packet 7 Packet 8 Ancillary Data Active Video (Image Data)

Color space/coding: YCbCr, sRGB, XYZ, YCM, Bayer, BT601, BT709,

A standard does not guarantee *interoperability*

Ensuring that AVB nodes talk to AVB nodes

AVnu Alliance update

Membership growing with 20+% year on year

more than 80 members now

First test and certification test-site up and running

Additional test-sites in preparation

First AVB Products have been certified

Ethernet switches and Pro Audio devices

Certification of Pro Video devices planned to start in Q2 2015

Minimum specification: only most common formats

Summarizing the benefits of Ethernet AVB

Based on *existing*, *open standards* from a very reputable and succesful standards body (IEEE)

One framework for reliable, time-synchronised, real-time transport of **video/audio/data**

Proven technology that is **available now**: large professional AVB audio systems being deployed in the field

Interoperability is going to be taken care of: **AVnu alliance**

<u>Plug-and play</u>: no conflicts or fiddling with IP addresses, etc

<u>Fool-proof</u>: the network is self-managing, it does not rely on the skills of network engineers or a (proprietery) software management layer.

<u>Perfect co-existence</u> (and reserved bandwidth for) with standard IP traffic (eg. control, monitoring, etc)

Thank you !